Title: Photo- and radioluminescent properties Lu₂WO₆:Bi and Sr₂SiO₄:M (M= Ce, Eu) in the

temperature range 10 – 300 K.

Supervisor: prof. dr hab. Eugeniusz Zych

Abstract

The PhD thesis is devoted to the structural, morphological and spectroscopic characteristics of

powders: Lu₂WO₆:Bi and Sr₂SiO₄:M (M= Ce, Eu). Radioluminescence measurements of Lu₂WO₆:Bi

powders were carried out in the temperature range of 10 - 300 K, while for Sr₂SiO₄ powders:M (M=

Ce, Eu) at room temperature. Photoluminescence measurements of powders- excitation and

emission spectra were recorded at 10 and 300 K for Lu₂WO₆:Bi and 30 and 300 K for Sr₂SiO₄:M (M=

Ce, Eu). For silicates also were recorded thermoluminescence spectra in the temperature range 40 -

500 °C.

The results of structural studies have shown that pure monoclinic phase Lu₂WO₆, can be

obtained at 1200 and 1400 °C, and doping with Bi3+ ions does not change the structure of the

compound. The analysis of radio- and photoluminescence studies showed that Bi³⁺ and WO₆ groups

are able to capture the energy of excitating radiation by trapping charge carriers. The obtained

results let us to propose a schematic energy diagram and a configuration diagram, which characterize

spectroscopic process in the system.

In the case of Sr_2SiO_4 :M (M = Ce, Eu) powders the research were focused on developing a

synthesis method allowing to receive two polymorphic forms: orthorhombic (α'-Sr₂SiO₄) and

monoclinic (β-Sr₂SiO₄). The results of structural research determined the parameters which allows to

obtain pure phase compounds. It has been proved that: temperature, method of heating, type and

amount of flux, as well as the type and amount of admixture ions affect the crystallization.

Performed spectroscopic studies of two varieties of polymorphs Sr₂SiO₄:M (M = Ce, Eu) showed the

emission from the activator ions occupying two inequivalent positions in the structure, and the

occurring energy transfer between the ions takes place based on the Förster mechanism. Analysis of

spectroscopic results showed that an efficient luminescence was obtained for powders crystallizing in

a monoclinic system. Additionally, for silicates doped with Ce³⁺ or Eu²⁺ ions, were recorded

thermoluminescence spectra. It was shown that both activators act as hole trapping centers, and in

the same time they are emission centers in the thermoluminescence process. The electron is trapped

on the defect which arises in the production process of materials - oxygen vacancy.