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One of the biggest challenges in the coupled-cluster (CC) theory and its equation-of-motion
(EOM) and linear-response extensions to excited states has been designing efficient ways of
incorporating higher—than—two-body components of the cluster and EOM excitation operators
capable of producing accurate energetics equivalent to high-level CC/EOMCC calculations, such
as CCSDT, CCSDTQ, and EOMCCSDT, at small fractions of the computational costs, even when
electronic quasi-degeneracies become larger and higher—than—two-body components of the cluster
and excitation operators become nonperturbative. This challenge can be addressed by adopting
moment expansions defining the CC(P;Q) formalism, which can be viewed as a generalization of
the previously developed completely renormalized CC and EOMCC approaches to unconventional
truncations in the cluster and EOM excitation operators [1]. For the CC(P;Q) formalism to be
effective, an efficient method must be developed to identify the leading higher-than—doubly
excited determinants for inclusion in the subspace of the many-electron Hilbert space used in the
iterative steps of the CC(P;Q) algorithm. This can be done with the help of active orbitals, resulting
in the CC(t;3), CC(t,q;3), CC(t,q;3,4), etc. hierarchy [1,2], Quantum Monte Carlo (QMC) wave
function propagations employing the configuration interaction (CI) QMC and CCMC approaches,
resulting in the semi-stochastic CC(P;Q) theories [3], sequences of Hamiltonian diagonalizations
originating from the selected CI schemes, such as CIPSI, resulting in the CIPSI-driven CC(P;Q)
algorithm [4], and the adaptive, self-improving, CC(P;Q) framework, which frees us from the user-
defined active orbitals and non-CC (CIQMC, CIPSI) or stochastic (CIQMC, CCMC) concepts by
taking advantage of the intrinsic mathematical structure of the CC(P;Q) moment expansions in
defining the underlying excitation manifolds [2,5]. In this lecture, we will discuss our recent
progress in the CC(P;Q) methodology, especially in the CIPSI-driven and adaptive CC(P;Q)
algorithms and their extensions to excited states. The usefulness of the CIPSI-driven and adaptive
CC(P;0Q) methodologies will be illustrated by chemical bond dissociations and reaction pathways,
singlet—triplet gaps in biradicals, and excited states including one- as well as many-electron
transitions. Information about the CC(P;Q) methods in GAMESS and our open-source CCpy
package available at https://github.com/piecuch-group/ccpy will be provided as well.
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